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ocean optical and biological in situ data that were collected during 2002–2005,
we have evaluated the performance of atmospheric correction algorithms for the ocean color products from
the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua. Specifically, algorithms using the
MODIS shortwave infrared (SWIR) bands and an approach using the near-infrared (NIR) and SWIR combined
method are evaluated, compared to the match-up results from the NASA standard algorithm (using the NIR
bands). The in situ data for the match-up analyses were collected mostly from non-turbid ocean waters. It is
critical to assess and understand the algorithm performance for deriving MODIS ocean color products,
providing science and user communities with the important data quality information. Results show that,
although the SWIR method for data processing has generally reduced the bias errors, the noise errors are
increased due mainly to significantly lower sensor signal-noise ratio (SNR) values for the MODIS SWIR bands,
as well as the increased uncertainties using the SWIR method for the atmospheric correction. This has further
demonstrated that future ocean color satellite sensors will require significantly improved sensor SNR
performance for the SWIR bands. The NIR–SWIR combined method, for which the non-turbid and turbid
ocean waters are processed using the NIR and SWIR method, respectively, has been shown to produce
improved ocean color products.

Published by Elsevier Inc.
1. Introduction

In a recent development, an atmospheric correction algorithm using
the shortwave infrared (SWIR) bands has been demonstrated to derive
improved ocean color products in turbid coastal waters measured by the
Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua (Franz
et al., 2006; Wang, 2007; Wang and Shi, 2005; Wang et al., 2007). The
NASA standard ocean color products have been routinely derived using
the two MODIS near-infrared (NIR) bands (748 and 869 nm) for
atmospheric correction (Gordon, 1997; Gordon and Wang, 1994), with
assumption of a black ocean in the NIR for the open ocean and
modifications to account for the NIR ocean contributions for productive
(but not very turbid) near-shore or coastal waters (Stumpf et al., 2003).
The same data processing procedure has also been used for deriving
ocean color products from the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) (Gordon and Wang, 1994; McClain et al., 2004; Wang et al.,
2005). For turbid waters in coastal regions, however, the NIR black ocean
assumption and modifications are often invalid (Lavender et al., 2005;
Ruddick et al., 2000; Siegel et al., 2000; Stumpf et al., 2003;Wang and Shi,
301 763 8572.
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2005), leading to large errors in the MODIS-derived ocean color products
(Wang et al., 2007). With the in situ measurements from the China east
coastal region, Wang et al. (2007) demonstrated that using the SWIR
algorithm the MODIS ocean color products can be improved in the
extremely turbid waters. However, there are some noise errors in the
SWIR-derived data due mainly to the considerably lower sensor signal-
noise ratio (SNR) values for theMODIS SWIR bands (Wang and Shi, 2007).
Based on MODIS specifications (http://modis.gsfc.nasa.gov/), for a case of
maritime aerosols with aerosol optical thickness of 0.1 at the NIR band,
the MODIS SNR values for the two NIR ocean bands (1 km spatial
resolution) 748 and 869 nm are 341 and 272, respectively, while the SNR
values are 12, 12, and 11 for the three SWIR bands (0.5 km spatial
resolution) at 1240,1640, and 2130 nm, respectively (Wang, 2007). In fact,
for accurate atmospheric correction for ocean color products, it requires
an order of magnitude larger in the SNR values than those in the MODIS
SWIR band specifications (Wang, 2007). With the spatial resolution of
1 km for the MODIS SWIR bands, the SWIR SNR values can be increased,
but still not enough. Future satellite sensor, the Visible Infrared Imaging
Radiometer Suite (VIIRS) on board of the National Polar-Orbiting
Operational Environmental Satellite System (NPOESS), will also have
similar three SWIR bands as MODIS. Unfortunately, the VIIRS SWIR bands
were also designed for the land and atmosphere applications with low
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SNR characteristics. Recently, a NIR–SWIR combined method for the
MODIS ocean color data processing has been proposed (Shi and Wang,
2007; Wang and Shi, 2007). For this approach, ocean color products are
derived using the standard (NIR) algorithm in non-turbid oceans,whereas
for turbid waters the products are obtained using the SWIR method.
Therefore, it is useful to evaluate these two newapproaches, i.e., the SWIR
and NIR–SWIR combinedmethods, for deriving the ocean color products.
Note that both SWIR and NIR–SWIR algorithms use the MODIS SWIR
reflectance at the wavelength 1240 nm for the cloudmasking (Wang and
Shi, 2006), as well as the improved aerosol lookup tables that include the
aerosol polarization effects (Wang, 2006b).

Since 1997, through various projects and programs, NASA has
funded the collection of ocean in situ data for satellite data product
validation, algorithm development, satellite data comparison and
inter-calibration, and data merger studies and time series analyses.
The SeaWiFS Bio-optical Archive and Storage System (SeaBASS)
(Werdell et al., 2003; Werdell and Bailey, 2005) maintains a local
repository of in situ ocean optical and bio-optical data to support and
sustain regular scientific analyses. Specifically, the database includes
in situ ocean optical (e.g., ocean water-leaving radiance spectra),
biological (e.g., chlorophyll-a concentration), and other related
oceanographic and atmospheric data (see details in http://seabass.
gsfc.nasa.gov/). In fact, the SeaBASS datawere contributed by a variety
of researchers from international ocean community, using various
instrumentation with all measurements closely follow rigorous,
community-defined deployment and data processing protocols
(Mueller and Fargion, 2002). The SeaBASS in situ data have been
continuously used in support of SeaWiFS and MODIS ocean color
Fig. 1. The flow chart of the SWIR and NIR–SWIR atmospheric correction algorithms for MOD
cm−2 μm−1 sr−1 and mg m−3, respectively.
product validation and algorithm evaluation, e.g., (Bailey andWerdell,
2006; Wang et al., 2005). Thus, the SeaBASS data are appropriate for
the new algorithm evaluations.

In this paper, we evaluate the performance of three different
MODIS ocean color data processing approaches, i.e., the NASA
standard (NIR) algorithm, the SWIR algorithm, and the NIR–SWIR
combined method, using the SeaBASS in situ data. Our purpose is to
assess the algorithm performance for the SWIR and the NIR–SWIR
combined methods in comparison to the standard (NIR) method. It is
particularly useful to evaluate and understand the SWIR algorithm
performance for producing the MODIS ocean color products (includ-
ing particularly the SWIR algorithm performance in open oceans). The
specific ocean color products utilized for this evaluation include
MODIS-derived normalized water-leaving radiance (Gordon, 1997,
2005; Gordon and Wang, 1994; Morel and Gentili, 1991; Wang,
2006a), nLw(λ), at wavelengths 412, 443, 488, 531, 551, and 667 nm,
chlorophyll-a concentration (O'Reilly et al., 1998), Chl-a, and the
diffuse attenuation coefficient (Mueller, 2000) at the wavelength
490 nm, K490. It is noted that the normalized water-leaving radiance
data are essential for all satellite ocean biological and ocean optical
products, e.g., chlorophyll-a concentration, the diffuse attenuation
coefficient, and ocean inherent optical property data (Lee et al., 2002;
Maritorena et al., 2002; Mueller, 2000; O'Reilly et al., 1998). We
provide here the match-up method and detailed data analyses and
discussions for the algorithm evaluation and validation. In addition,
we show comparison results for some MODIS global monthly
composite images of ocean color product derived using the standard
(NIR), SWIR, and NIR–SWIR combined methods.
IS ocean color data processing. Note that nLw(869) and Chl-a in the flow chart are in mW
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2. MODIS products compared with the in situ measurements

2.1. Data and method

The NIR, SWIR, and NIR–SWIR combined atmospheric correction
algorithms have been described in detail in various references (Gordon
and Wang, 1994; Gordon, 1997; Wang and Shi, 2005; Wang, 2007;
Fig. 2.MODIS-derived nLw(λ), Chl-a and K490 compared with in situmeasurements using (a)
SWIR combined method.
Wang et al., 2007). For the NIR–SWIR combined method, however,
there are some algorithm refinements for detection and identification
of the turbid waters as compared with the original Wang and Shi
(2007) method. Specifically, MODIS-measured pixels are identified as
the turbid waters for cases with turbid water index (Shi and Wang,
2007) Tind (748,1240) N1.05 and normalized water-leaving radiance at
the MODIS 869 nm (nLw(869)) ≥0.08 mW cm−2 μm−1 sr−1, as well as
and (b) the standard algorithm, (c) and (d) the SWIR algorithm, and (e) and (f) the NIR–
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Chl-a value N1.0 mg/m3. Thus, in the MODIS ocean color data
processing, for pixels with turbid water index Tind(748,1240) N1.05,
one iteration of the SWIR atmospheric correctionprocedure is required
for deriving the nLw(869) and Chl-a values. We found that this
refinement improved the results in detecting the turbid water pixels,
as well as MODIS-derived ocean color products. In the NIR–SWIR
combined method, for pixels identified as turbid waters the SWIR
algorithm is operated, while for all other pixels the NIR algorithm is
executed (Wang and Shi, 2007). The NIR algorithmhas employed a NIR
ocean contribution correction (Stumpf et al., 2003) for the productive
oceanwaters. Fig.1 provides the flowchart for the SWIR and NIR–SWR
atmospheric correction algorithm procedures for the MODIS ocean
color data processing.

It is also noted that the cloud-masking scheme implemented in the
SWIR and NIR–SWIR algorithms for the ocean color data processing is
different from that in the standard (NIR) algorithm (Wang and Shi,
2006). Both the SWIR and NIR–SWIR algorithms use the TOA
reflectance at the MODIS SWIR 1240 nm band for cloud masking,
while the standard (NIR) method uses the TOA NIR 869 nm reflectance
for identifying clear sky scenes. The SWIR cloud-masking algorithm
generally has a better performance than the NIR algorithm in the
coastal ocean regions (Wang and Shi, 2006). Detailed comparisons and
discussions in the cloud-masking algorithm performance for the NIR
and SWIR reflectance approaches can be found in Wang and Shi
(2006). In addition, the improved aerosol lookup tables that include
aerosol polarization effects have been implemented in the SWIR and
NIR–SWIR algorithms (Wang, 2006b), and both algorithms have been
vicariously calibrated based on a scheme outline in (Wang, 2006b).

MODIS-Aqua standard level-2 data have been compared with in
situ measurements from the SeaBASS database for the period of
2002–2005, following Bailey and Werdell (2006). The match-up
results between MODIS-Aqua and SeaBASS in situ data are available
from the NASA ocean color website (http://oceancolor.gsfc.nasa.
gov), and used here as a reference. The same SeaBASS data set is
also used for the algorithm evaluation for the SWIR and NIR–SWIR
combined methods. MODIS ocean color products that are processed
using the SWIR and NIR–SWIR algorithms are generated from the
MODIS-Aqua level-1B data. While the match-up results in the
NASA ocean color website were produced using the SeaWiFS Data
Analysis System (SeaDAS) version 4.8 for MODIS-Aqua data
processing, the current MODIS ocean color products are processed
using SeaDAS version 5.05. We have verified that results produced
from these two SeaDAS versions are consistent (with small
differences). Thus, in this study there are three MODIS-Aqua
product data sets that are compared with the SeaBASS in situ
data: the NASA standard products processed using the SeaDAS
version 5.05 (data downloaded directly from NASA ocean color web
site http://oceancolor.gsfc.nasa.gov), the products produced using
Table 1
The match-up comparisons for the various ocean color products as in the slope, intercept (

Product Data
#

Standard method SW

Slope Inta Rb Slop

nLw(412) 86 0.700 0.064 0.793 0.72
nLw(443) 98 0.770 0.092 0.859 0.85
nLw(488) 93 0.916 −0.008 0.936 1.10
nLw(531) 27 0.932 −0.032 0.952 1.08
nLw(551) 94 0.915 0.000 0.952 1.08
nLw(667) 66 0.632 0.007 0.771 0.75
Overall
nLw(λ)

464 0.841 0.018 0.910 0.94

K490 23 0.830 0.031 0.826 0.89
Chl-ac 224 0.782 0.047 0.858 0.87

a Intercept for line fit.
b Correlation coefficient.
c Data fitted in log scale.
the SWIR algorithm, and the data from the NIR–SWIR combined
method (data processed from MODIS L1B for both the SWIR and
NIR–SWIR methods).

The in situ data used in this study are from the SeaBASS data sets
that were collected by various investigators during 2002–2005.
Specifically, the in situ data discussed and used in the match-up
analyses in here were primarily from ocean regions of the U.S. east
coast (42°N–44°N, 70°W–76°W), the U.S. west coast (34°N–37°N,
117°W–124°W), the Adriatic Sea (12°N–16°N, 12°E–16°E), and the
Brazilian east coast (27°S–50°S, 45°W–60°W). Some small portion of
the in situ data was from the North Pacific (near Hawaii), south west
coast of Africa, east coast of Africa, and the South China Sea. In the
satellite and in situ data match-up analyses, ~10% of the in situ
radiance data used in this study may be considered as from turbid
ocean waters, i.e., at least one pixel from the satellite 5×5 match-up
box (see below) is characterized as the turbid water and processed
using the SWIR algorithm in the NIR–SWIR data processing (Fig. 1).

For the data match-up analyses, the procedure of Bailey and
Werdell (2006) was used to produce the satellite data for comparison
with the in situ measurements. Briefly, for a given MODIS-derived
ocean color product, pixels with a 5×5 box centered at the location of
the in situ measurement were extracted. A set of masks was used to
produce the valid ocean color products in MODIS data processing.
These exclusionmasks are: land, cloud/ice, stray light, and sun glint. In
addition, two flags were also used to exclude pixels with high solar-
zenith angle (N75°) and/or sensor-zenith angle (N60°). A valid satellite
match-up requires a minimum of 50% valid pixels in the defined 5×5
box (i.e., ≥13 valid pixels). Furthermore, a uniformity screen for the
defined match-up box is applied for producing the mean value (Bailey
and Werdell, 2006). Specifically, the mean value (�Y ) and standard
deviation (STD) from the defined match-up box are first computed. A
filter of (�Y ±1.5×STD) is then defined to further select the required
pixels from the 5×5 box for a revised mean value and STD
computations, i.e., pixels with their values between (�Y −1.5×STD)
and (�Y +1.5×STD) are used for deriving the final mean value and other
statistics parameters (e.g., STD). In addition, the data match-ups are
only considered for cases where the time difference between the
satellite and in situ measurements is within three (±3) hours.

2.2. Overall comparison results

Fig. 2 provides an overall comparison between the MODIS-derived
and in situmeasured ocean color products for various cases. The ocean
color products included in these results are the normalized water-
leaving radiance nLw(λ) at wavelengths 412, 443, 488, 531, 551, and
667 nm, chlorophyll-a concentration (Chl-a), and the diffuse attenua-
tion coefficient at the wavelength 490 nm (K490). Fig. 2(a), (c), and (e)
show nLw(λ) comparisons, while Fig. 2(b), (d), and (f) are evaluations
Int), and correlation coefficient (R)

IR method NIR-SWIR method

e Inta Rb Slope Inta Rb

7 0.216 0.727 0.758 0.253 0.839
1 0.155 0.772 0.864 0.172 0.885
4 −0.059 0.892 1.038 0.039 0.940
4 −0.110 0.950 1.060 0.017 0.957
5 −0.076 0.914 1.047 0.025 0.959
7 0.065 0.435 0.771 0.019 0.803
9 0.046 0.866 0.962 0.063 0.929

1 0.030 0.636 0.720 0.023 0.846
1 −0.055 0.821 0.708 0.082 0.833

http://oceancolor.gsfc.nasa.gov
http://oceancolor.gsfc.nasa.gov
http://oceancolor.gsfc.nasa.gov
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for products Chl-a and K490. Fig. 2(a), (c), and (e) are MODIS-derived
nLw(λ) results compared with the in situ measurements, correspond-
ing to cases for which MODIS-Aqua data are processed using the
standard (NIR), SWIR, and NIR–SWIR combined method, respectively.
Fig. 2(b), (d), and (f) are results of the Chl-a and K490 match-ups
Fig. 3. Comparisons of the histogram results in the ocean color products from the in situ data
the wavelength 412, 443, 488, 551, and 667 nm, respectively, and (f) chlorophyll-a concentr
corresponding to MODIS data processed with the three different
algorithms.

For the nLw(λ) results, the slopes of the overall match-ups using
the SWIR and NIR–SWIR methods (Fig. 2(c) and (e)) have been
improved compared with those using the standard (NIR) method
and from the MODIS measurements with three different methods for (a)–(e) nLw(λ) at
ation.



Table 2
Results of the mean ratio value (MODIS vs. in situ) and standard deviation (STD) for
various MODIS ocean color products derived using three different algorithms

Product Data
#

Mean ratioa±STDb

Standard method SWIR method NIR–SWIR method

nLw(412) 86 0.804±0.351 1.058±0.585 1.163±0.418
nLw(443) 98 0.898±0.294 1.062±0.548 1.114±0.335
nLw(488) 93 0.907±0.233 1.026±0.442 1.103±0.260
nLw(531) 27 0.929±0.252 0.974±0.307 1.073±0.279
nLw(551) 94 0.939±0.236 0.957±0.384 1.019±0.243
nLw(667) 66 0.762±0.389 1.542±1.213 1.056±0.479
K490 23 1.163±0.293 1.124±0.713 0.976±0.248
Chl-a 224 1.359±1.081 1.135±0.904 1.037±0.828

aMean ratio between MODIS vs. in situ data.
bStandard deviation.
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(Fig. 2(a)). However, the SWIR method produced increased product
noise, which can be seen in Fig. 2 and is also indicated from the
reduced correlation coefficient for the match-ups. The slopes in the
overall nLw(λ) match-ups for the standard, SWIR, and NIR–SWIR
methods are 0.841, 0.949, and 0.962 with their corresponding
correlation coefficients of 0.910, 0.866, and 0.929, respectively. The
data noise produced by the SWIR method is due mainly to the
substantially lower sensor SNR values for the MODIS SWIR bands and
also because of SWIR algorithm performance errors (Wang, 2007).
Similar results are also shown for the Chl-a and K490 match-up
comparisons (Fig. 2(b), (d), and (f)); in particular, results from the
SWIR method show lower correlation coefficient values.

Table 1 summarizes match-up values of the slope, intercept (Int),
and correlation coefficient (R) for the nLw(λ) at various wavelengths,
as well as results for the nLw(λ) overall comparison. The match-up
comparisons (slope, intercept, and correlation coefficient) for pro-
ducts Chl-a and K490 are also provided in Table 1. The number of data
(same for all three methods) that are used for the match-up analyses
are provided in Table 1. For the slope comparison, the results in Table 1
show that overall the SWIR and NIR–SWIR methods performed
slightly better than the standard method. However, the SWIR method
produced a little more data noise as indicated by the lower values in
correlation coefficients. The match-up results from the NIR–SWIR
method have correlation coefficient values that are comparable to
those from the standard method.

Fig. 3 compares histograms of the ocean color data products from
the SeaBASS database (in situ measurements) to the MODIS data
Fig. 4. Comparisons of the MOIDS ocean color products derived using the SWIR and
standard (NIR) algorithms for (a) nLw(λ) data and (b) Chl-a and K490 products.
derived from three different approaches. Fig. 3(a)–(e) are histogram
results for the normalized water-leaving radiance nLw(λ) at wave-
lengths 412, 443, 488, 551, and 667 nm, respectively, while Fig. 3(f) is
results for the chlorophyll-a comparisons. The histogram results in the
nLw(λ) comparison show that, compared with the in situ data, the
standard (NIR) method produces biased low nLw(λ) at the blue bands,
while the SWIR method generally has a slightly larger data range in
the MODIS derived products. On the other hand, the chlorophyll-a
results derived from the standard (NIR) method (Fig. 3(f)) show an
overall slightly biased high value (data peak at ~1 mg/m3) compared
with the in situ data, while results from both SWIR and NIR–SWIR
combined methods appear match well with the in situ chlorophyll-a
data.

Providing an overall SWIR algorithm performance evaluation in a
reference to the standard method, Fig. 4 shows comparisons of the
MODIS-derived products using the SWIR (y-axis) and standard (NIR)
(x-axis) algorithm. Fig. 4(a) provides comparisons of the derived
nLw(λ) values, while Fig. 4(b) compares results of Chl-a and K490
products. The overall nLw(λ) comparisons (Fig. 4(a)) show a linear
fit with a slope of 1.133, an intercept of 0.023, and the correlation
coefficient of 0.954. Therefore, overall the MODIS nLw(λ) values
derived using the SWIR method are generally slightly larger than
those using the standard (NIR) method. Some data dispersion in
Fig. 4(a) is also apparent, due to data noise from the SWIR method.
Both Chl-a and K490 results in Fig. 4(b) indicate slightly lower
values derived from the SWIR method when compared with those
from the standard (NIR) algorithm (data are mostly under 1:1 line).
The fit for Chl-a (in logarithmic scale) has a slope of 1.117 (N1), but
with an intercept of −0.248 (b0). On the other hand, a linear fit for
the K490 comparison has a slope, intercept, and correlation
coefficient of 1.190 (N1), −0.015 (b0), and 0.853, respectively. It is
noted that the Chl-a comparison shows a high correlation coefficient
(0.960), indicating the reduced noise error in the Chl-a data
(proportional to the ratio of nLw(λ) values at two bands) from the
SWIR method.

2.3. Some quantitative comparisons and evaluations

2.3.1. Mean ratio results between satellite and in situ data
For a more quantitative evaluation, the mean ratio value between

the MODIS-derived products (from the three different approaches)
and the in situ measured data are computed, as well as the
corresponding STD values. Table 2 shows results of the mean ratio
values and STDs for the MODIS-Aqua products processed using the
standard (NIR), SWIR, and NIR–SWIR methods compared with the
SeaBASS in situ data. In Table 2, the mean ratio value between the
MODIS-derived vs. in situ data, as well as the corresponding STD
from the standard, SWIR, and NIR–SWIR methods are provided for
nLw(λ) at wavelengths 412, 443, 488, 531, 551, 667 nm, the diffuse
attenuation coefficient K490, and chlorophyll-a concentration Chl-a.
Table 2 also provides the number of data (same for all three



Fig. 5. Comparisons of histogram results in the ratio value (MODIS vs. in situ) with the MODIS data processed using the standard (NIR), SWIR, and NIR–SWIR methods for (a)–(e) ratio
of nLw(λ) at the wavelength 412, 443, 488, 551, and 667 nm, respectively, and (f) ratio of chlorophyll-a (in logarithmic scale).
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methods) that are used for the mean ratio and STD computations for
each parameter.

Results in Table 2 show that overall the SWIR method produced
radiance data with the lowest bias errors, but with the highest
noise. Compared with products derived from the standard method,
products from the SWIR method generally have higher noise, in
particular, for the nLw(λ) data at the blue bands. For the nLw(412)
comparison, even though the SWIR method produced improved
data quality with regard to the bias error, the data noise from the
SWIR method is significantly increased compared with results from
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the standard method. Conversely, results from the standard method
show a generally biased low error in nLw(λ) product and biased
high error in K490 and Chl-a data. The nLw(λ) product from the
NIR–SWIR method has a slightly biased high error with the STD
values comparable with those from the standard method. For this
exercise, however, the NIR–SWIR method produced the best K490
and Chl-a products with the mean ratio and STD of 0.976±0.248
and 1.037±0.828, respectively.

2.3.2. Histogram results
Fig. 5 shows histogram results in the ratio value between MODIS-

derived and in situ measured data, demonstrating error distribution
for the three algorithms for various ocean color products. Fig. 5(a)–(e)
are histogram results in nLw(λ) at wavelengths of 412, 443, 488, 551,
and 667 nm, respectively, while Fig. 5(f) shows results for the
chlorophyll-a ratio (in logarithmic scale). For the nLw(λ) comparisons,
Fig. 5(a) and (b) show the peak values for nLw(λ) ratio at wavelengths
Fig. 6. Color images for the global composite distribution of the MODIS-Aqua derived Chl-a
standard (NIR) algorithm, (c) and (d) the SWIR method, and (e) and (f) the NIR–SWIR comb
412 and 443 nm are biased low (b1) for the data from the standard
(NIR) algorithm, while the data processed using the SWIR algorithm
show a large variation (histogram data spread more widely). On the
other hand, the chlorophyll-a results (Fig. 5(f)) show comparable data
variations in the ratio values from all three methods, but with slightly
higher ratio derived from the standard (NIR)method. These results are
consistent with results discussed in the previous sections.

3. Discussions

The match-up analysis demonstrates that using the MODIS SWIR
bands for ocean color data processing has reduced the bias errors in
nLw(λ). However, the noise errors are increased, possibly leading to
some negative nLw(λ) cases for which true nLw(λ) values are very
low. Comparing to the results from the standard (NIR) method,
however, the SWIR method improves the MODIS-derived nLw(λ)
products in the coastal regions, where true nLw(λ) values at the blue
and nLw(443) for the month of July 2005, which were retrieved using (a) and (b) the
ined method.



643M. Wang et al. / Remote Sensing of Environment 113 (2009) 635–644
(412 and 443 nm) are often quite low. In these cases, we found that
using the SWIR method the MODIS nLw(λ) values at the blue are
elevated (Wang and Shi, 2007; Wang et al., 2007) and cases with the
negative nLw(λ) are in fact reduced significantly. Therefore, in the
coastal ocean regions, the SWIR method is usually superior to the NIR
method, particularly over the turbid waters. It is important to note
that, for both the SWIR and NIR–SWIR algorithms, bias errors in nLw
(λ) from the match-up analysis are reduced, indicating improved
algorithm performance also related to the improved aerosol lookup
tables with the vicarious calibration.

The data product noise errors from the SWIR method are mainly
from two sources: (1) considerably lower SNR values for the MODIS
SWIR bands that are used for the data processing (atmospheric
correction) and (2) a little more uncertainty introduced by using the
SWIR bands (1240 and 2130 nm) for atmospheric correction. A recent
study (Wang, 2007) shows that atmospheric correction using the
SWIR bands (1240 and 2130 nm) for deriving nLw(λ) often produces a
little larger uncertainty than results from the NIR bands (748 and
869 nm). This is particularly true for cases of the maritime aerosols,
which are often dominated in the open oceans. In addition, with the
current MODIS SNR characteristics for the SWIR bands, there is
significant noise in the derived nLw(λ) using the SWIR algorithm
(Wang, 2007). Therefore, it is proposed that MODIS-Aqua ocean color
products be processed using the NIR–SWIR combined method for
which the non-turbid and turbid oceanwaters are processed using the
standard (NIR) and SWIR method, respectively.

For the turbid coastal waters, the use of theMODIS SWIR algorithm
versus the standard (NIR) algorithm with the NIR ocean contribution
correction is somewhat a tradeoff between using a noised measure-
ment with little or no bias versus a high quality radiance measure-
ment with a correction algorithm that is in error. However, it is
generally desired to use the satellite-measured data instead of model-
ing for the NIR ocean contribution correction because of model
limitations, particularly over very turbid waters. A recent study (paper
in preparation) shows that, for extremely turbidwaters, it is difficult to
model the NIR ocean contributions. Thus, the SWIR algorithm is still
required for the coastal and inland turbid waters.

4. Comparisons from MODIS-Aqua global data processing

The standard (NIR), SWIR, and NIR–SWIR algorithm performances
are further evaluated with the MODIS-Aqua global ocean color
product data. Fig. 6 provides color images for global composite
distributions of MODIS-Aqua Chl-a and nLw(443) for themonth of July
2005, which were derived using the standard (NIR), SWIR, and NIR–
SWIR combined methods from MODIS-Aqua global measurements.
Fig. 6(a), (c), and (d) are color images of Chl-a for MODIS-Aqua data
that were processed using the standard (NIR), SWIR, and NIR–SWIR
method, respectively, while Fig. 6(b), (d), and (f) are the corresponding
nLw(443) images from the three different data processing methods.
The product images for the standard (NIR) method (Fig. 6(a) and (b))
were downloaded directly from the NASA ocean color website, while
results of the SWIR and NIR–SWIR combined methods (Fig. 6(c)–(f))
were generated from the MODIS-Aqua L1B data (July of 2005) using
the SWIR and NIR–SWIR method, respectively. These images compare
the global spatial variations of the ocean color products (Chl-a and
nLw(443)) that were derived from three different methods. It is
noted that there is a solar-zenith angle cut off at 70° for all three data
processing methods. Results in Fig. 6 show that, for the most of ocean
regions, all three methods produced similar monthly Chl-a and nLw
(443) data distributions. However, Fig. 6 shows some obvious
differences in MODIS-derived Chl-a and nLw(443) from three
methods. Both SWIR and NIR–SWIR methods show some improved
data coverage, e.g., along the China east coastal region, while the
SWIR method produced some obvious different results in some
open ocean regions, e.g., in the southern ocean. Judging data quality by
their coverage, spatial continuity, and image smoothness, it appears
that the NIR–SWIR method produced the best Chl-a and nLw(443)
results.

5. Conclusions

Using the in situ measurements from the SeaBASS database, we
have evaluated MODIS-Aqua ocean color products derived from the
atmospheric correction algorithm using the standard (NIR), SWIR, and
NIR–SWIR combined methods. Results show that, although the bias
errors in the derived nLw(λ) are reduced using the SWIR method,
there is increased noise in the derived nLw(λ) product due primarily
to considerably lower sensor SNR values for the MODIS SWIR bands
and also because of errors from the SWIR algorithm. Therefore, for
accurate ocean color products, future ocean color satellite sensors will
require much better sensor SNR performance for the SWIR bands.
Conversely, results from the NIR–SWIR algorithm evaluation demon-
strate improved ocean color products, particularly, for the chlorophyll-
a product. Therefore, it is suggested that for the non-turbid ocean the
MODIS ocean color products be processed using the NIR algorithm,
while for the coastal turbid waters the data be processed using the
SWIR and/or other methods to account for significant NIR ocean
contributions.
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